Evaluation of Domain Adaptation Techniques for TRANSLI in a Real-World Environment
نویسندگان
چکیده
Statistical Machine Translation (SMT) systems specialized for one domain often perform poorly when applied to other domains. Domain adaptation techniques allow SMT models trained from a source domain with abundant data to accommodate different target domains with limited data. This paper evaluates the performance of two adaptive techniques based on log-linear and mixture models on data from the legal domain in real-world settings. Performance evaluation includes postediting time and effort required by a professional post-editor to improve the quality of machine-generated translations to meet industry standards, as well as traditional automated scoring techniques (BLEU scores). Results indicates that the domain adaptation techniques can yield a significant increase in BLEU score (up to three points) and a significant reduction in post-editing time of about one second per word in an operational environment.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملAdapting Deep Visuomotor Representations with Weak Pairwise Constraints
Real-world robotics problems often occur in domains that differ significantly from the robot’s prior training environment. For many robotic control tasks, real world experience is expensive to obtain, but data is easy to collect in either an instrumented environment or in simulation. We propose a novel domain adaptation approach for robot perception that adapts visual representations learned on...
متن کاملDomain Adaptation Techniques for Machine Translation and Their Evaluation in a Real-World Setting
Statistical Machine Translation (SMT) is currently used in real-time and commercial settings to quickly produce initial translations for a document which can later be edited by a human. The SMT models specialized for one domain often perform poorly when applied to other domains. The typical assumption that both training and testing data are drawn from the same distribution no longer applies. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012